If it's not what You are looking for type in the equation solver your own equation and let us solve it.
21x^2+16x-22=0
a = 21; b = 16; c = -22;
Δ = b2-4ac
Δ = 162-4·21·(-22)
Δ = 2104
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2104}=\sqrt{4*526}=\sqrt{4}*\sqrt{526}=2\sqrt{526}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-2\sqrt{526}}{2*21}=\frac{-16-2\sqrt{526}}{42} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+2\sqrt{526}}{2*21}=\frac{-16+2\sqrt{526}}{42} $
| 0.06-0.01(x+3)=-0.04(3-x) | | 23x+46=7(3x+6)+2x+4 | | -4(3t-2)+5t=6t-9 | | -5(7x-2)+5=-35x+15 | | 5x+4=-5+2x+21 | | 1x+1=-1x+1 | | 5x+13=2x+34 | | 45+2x=7x+10 | | 45+2x=7x+1 | | 36+2x=6+5x | | 16/x=x/14 | | 21=45-4x | | 29-5x=9 | | 23+3x=44 | | 3(4x)=0 | | 9n+13=6n+76 | | (8x+34)=(5x-10) | | X10(2-1)=2(2x+4) | | -4(-4x+7)=3(4x+2) | | 23=59-x | | 11x-8=-41 | | 2x+10=22-4× | | 2x-5x+1=-9 | | 0,5x^2-3,5+5=0 | | p+5=23 | | (X+3)-x(x-4)=29 | | 7(2x=4)=84 | | 2/5x-1/4x+6=3/10x | | 3(6s+5)-12s=3(2s+1)-6 | | 2x^2+12x+45=0 | | 2y=y+5y=16 | | 3/10(x+50)+9/10x=51 |